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SECTION I

INTRODUCTION

Dynamic stability or instability of elast ic structures has drawn

considerable attention in the past thirty years. The importance of the

subject lies primarily in the constant demand for lightweight efficient

structures, which requires a good understanding of how structures respond

to loads that induce dynamic effects.

The term "Dynamic Stability" encompasses many classes of problems

and it has been used, by the various investigators, in connection with a

particular study. Therefore it is not surprising that there are various

ti interpretations of the meaning of the term.

The class of problems falling in the category of parametric excitation

are the best defined, conceived and understood problems of dynamic stability.

An excellent treatment and bibliography can he found in the book by V. V.

Bolotin [1]. As a matter of fact, 11olotin applies the term "Dynamic Stability"

only to problems of parametric excitation.

In general, problems which deal with stability of motion have concerned

for many years researchers in many fields of engineering. Definitions for

stability and related criteria, as developed through the years, are given by

T. J. Stoker [2]. Additional references [3-6] provide the necessary details

as applied to a variety of problems. Some of these criteria find wide uses

in problems of stability and control of aircraft [7], control theory [8], and

many problems in fluid mechanics, combustion and, to a certain extent, elastic

structures under dynamic conditions.

Moreover, many authors refer to problems of the "follower force" type



as problems of dynamic stability [9-103. The primary reason for this

is that critical conditions can he obtained (in many cases) only through

the use of the "kinetic" or "dynamic" approach to static stability prob-

lems (flutter instead of divergence type of instability).

In addition, problems of aeroclastic instability and flow-induced

instability (fluid flowing through pipes) also fall under the general

heading of dynamic stability.

A large class of structural problems that has received attention

recently and does qualify as a category of dynamic stability is that of

impulsively loaded configurations and configurations which are suddenly

loaded with loads of constant magnitude and infinite duration. These

two types of loads may be thought of as mathematical idealizations of

blast loads of (a) large decay rates and small decay times and (b) small

decay rates and large decay times respectively. In addition, these types

of loads may be considered as representative of impact loads. Of course,

there are other physical explanatLions for such loads. For both types of

loads mentioned above the concept of dynamic stability is related with

the observation that for sufficiently small values of the loading the

system simply oscillates (linearly or non-linearly) about the near static

equilibrium point and the corresponding amplitudes of oscillation are

sufficiently small. If the loading is increased, some systems will experi-

ence large amplitude oscillations or in general divergent type of motion.

For this phenomenon to happen the configuration (turns out) must possess

two or more static equilibrium positions and "tunneling-through" 1ll

occurs by having trajectories that can pass through an unstable static equi-

librium point. Consequently, the methodologies developed by the various

"6
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investigators (including criteria and estimates) are for structural

configurations that exhibit snap-through buckling, when loaded qlasi-

statically.

Solutions to such problems started appearing in the open literature

in the early 1950's. Hoff and Bruce [12] considered the dynamic stability

of a pinned half-sine arch under a half-sine distributed load. The ideal

impulse problem as well as the case of a suddenly applied load with constant

magnitude and infinite duration were considered in this report. Budiansky

and Roth [131 in studying the axisymmetric behavior of a shallow spherical

cap under suddenly applied loads defined the load to be critical, when the

transient response increases suddenly with very little increase in the

magnitude of the load. This concept was adopted by numerous investigators

(see [143) in the subsequent years because it is tractable to computer solu-

tions. This concept was used by Budiansky and Iltchinson [19) in estimating

the critical load (suddenly applied) for imperfection sensitive systems.

Through this criterion, they related the dynamic critical load to the static

one. Finally, the concept was generalized in a subsequent paper by Budiansky

[16) in attempting to predict critical conditions for imperfection sensitive

structures under time dependent loads. Conceptually, one of the best efforts

in the area of dynamic buckling, under impulsive and suddenly applied loads,

is the work of Ilsu and his collaburators [l-203. In his studies, he defined

sufficiency conditions for stability and sufficiency conditions for instability,

thus finding upper and lower bounds for the critical impulse or critical

sudden load. Independently, Simitses £21] in dealing with the dynamic buckling

of shallow arches and spherical caps termed the lower bound as a minimum possible

critical load (MPC|.) and the Lipper bound as a minimum guaranteed critical load

(MCCL).

3



The purpose of the present work is to investigate the concept of

dynamic stability of structural elements subjected to step-loads and

develop the related criteria and estimates for finding critical conditions.

The step load consists of a suddenly applied load of constant magnitude

and finite duration top and the investigation will include the two ex-

treme cases of t - and t - 0 (ideal impulse). Moreover, the effect of
0 0

various parameters (small damping and preloading) on the critical con-

ditions is studied. The developed solution methodology is demonstrated

through simple mechanical models of one-and two-degrees of freedom. Section

I deals with the introduction to the subject of dynamic stability of struc-

tural elements. Section II presents a detailed static buckling analysis of

the models. Section III presents the concept of dynamic stability for im-

pulsively loaded systems, which is demonstrated through the same models.

Section IV gives a detailed treatment of systems loaded suddenly with con-

stant load of infinite duration. Section V extends these concepts for the

case of suddenly applied loads of constant magnitude and finite duration.

Sections VI and VII deal with the study of the effects of preloading and

small damping on the dynamic critical conditions.

I 4



SECTION II

GEOMETRY AND STATIC ANALYSIS OF THREE 1ECHANICAL MODELS

Model A. Geometrically Imperfect Model

Geometry of the Model

Consider the model shown on Fig. 2-1. This model consists of two rigid

bars of equal length, L, pinned together. The left bar is pinned on an im-

movable support, A, while the right end of the second bar is pinned on a

movable support, C, and loaded by a horizontal constant-directional force P.

A linear spring of stiffness k connects the bar common pin, B, to an im-

movable support, D, which is L units directly below support A. The initial

geometric imperfection, 6 is an angle between the horizontal line, joining

supports A and C, and bar AB (or BC). The deformed position is character-

ized by angle 0, as shown (in its positive direction).

Static StabIlity Analysis of the Model

The stability analysis of this model under quasi-static application of

the load P is performed by employing the energy approach. Through this

approach, equilibrium is characterized by

dUTdT 0 (2.1)

dO

where UT is the total potential, and the character of equilibrium (stable

or unstable) by the sign of the second derivative.

LLk

fig. 2-1 Geometry and Sign Convention for Model A.

5
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Fig. 2-2 Load-Displacement Curves (Model A).

* The total potential is:

P U T =2
T -~ [I 1 T i I/ 1 + min 9 )-p (cosn 0 cos 8) (2.2)kL 200

where p -2P/kL, and UT denotes the nondimensionalized total potential. The

superscript p implies "under load p'.
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The static equilibrium points are characterized by

p C.E/F;in- 11+6LnO C oto for 0 0 0 (2.3)
14- ine o

Note that, for 9 - 0 equilibrium is characterized by0

either 0 = 0

or p -coto (AF 0inO - l)/Jl inO (2.4)

Equilibrium positions are plotted on Fig. 2 as p versus 0-B0 for various

values of the geometric imperfection 9 . The stability test reveals that
0

the dashed line positions are stable, while the solid line positions are

unstable and snapping (violent buckling) takes place through the existence of

a limit point. Also note that positions characterized by negative values

for 0-0B (not shown herein) are stable and there is no possibility of buck-

ling. Therefore, our interest lies in the area of 0 > 0 and 0-0 • 0.

It is assumed, for simplicity, that the bars are weightless and the mass m

of the system is concentrated on the joint B.

Model B. Load Eccentricity Model

Model B, shown on Fig. 3, is representzlLive of eccentrically loaded

structural systems, exhibiting limit point instability. The bar is rigid

and of length L; the spring is linear of stiffness k and the load eccentricity

is denoted by e. The static stability analysis for this model is presented in

Ref [23]. The bar is assumed to be weighttess and the mass, m, of the system

is concentrated on the top of the rod, point 11.

7
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Fig. (2.3) Ccometry and Sign Conivention for Model B

The expression for the total potential is given by

P 1 2 2si
0.1 asill8 - Pt. (I - cose + sinID

In nondimenuionalized form this expression becomes

"i'"p

- 2 - 2p 0 - cos 0 + sin 9) (2.5)

2

whiere p ress is the tondilpen t [zed load and is the nondmen
2 2L

6 sionaized kn

.ka
si|onalized ecrcenti.i cIIY.



Furthermore, equilibrium is characterized by

= sinO (2.6)
- tanO+Z

and critical load (see Ref. [23) is given )y

Pcr = [1+e 2/3)-3/2 (2.7)

2.4 Model C. A Snap-Through Model

Consider the model shown on Fig. (2-4N. which consists of three equal

length rigid bars. The three bars are pinned to each other, and they are

connected with rotational springs of stiffness 0 (linear). The left bar

is pinned onto an immovable support, while the right bar is pinned onto a

movable support, which in turn is connected to a wall through a linear

extensional spring (horizontal) of stiffness k (linear). The middle bar

is originally horizontal and the loading consists of two equal concentrated

forces, P, applied at the ends of the middle bar and remaining vertical.

The original angle between the horizontal line, joining the supports and the

end bars is a. The angle between the horizontal and the left bar in a

deformed state is 0, while the angle between the horizontal and the right

bar is p.

OUndeformed

m -
" -r 

I
A9 LD k.D

[oA,

Fig. (2.4) Geometry and Sign Convention for Model C

9
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This is a two-degree-of-freedom model, and as it will be seen, from

the ensuing discussion, certain new feat,,res enter into the solution.

Assuming that cf. e. and cp are small angles such that their sine can

be well approximated by the angle itself and the cosine by one minus half

of the angle soaxtred. then the expression f.'r the total potential is

approximated bv
T. 2

+ kL - + YO0 2 - Pl. (2cr -0 - (p2

Note that for the above equatioLn to be dimensonally correct the following

order of magiitude must apply to the variouis terms. I f c, 0 and Y are

taken to be small numbers (of order 6). thu must be of order &2 x(kL2 ),

PL of order 63 x (kl, 2 ) and UP of order 6'(kl,2 ).

The independent variables are ep and 0 and the symmetric response mode

is characterized by 0

New variables r and s, are introduced s,,ch that the symnetric response

is characterized by s 3 0.

These are

0 (r-s)
(2.9

/1 (r+s)

0 (or

* r (0 + 0)/

(2.10)

s (Ye

* 2
where 0 /kL2 is a nondimensionalized rotational spring stiffness para-

meter. Through introduction of additional nondimensionalized parameters

- UT P
-2 2 Jp - 32(2.1l'

T  kl2 2

o.to

i 10



and by letting

2 OA(2.12)

the following expression for the total potential is obtained.

UT (r2 + 9s2 2 A r + A) +I (A - r - 3s )2  
- 2p (A - r) (2,13)

Note that, on the basis of the nondimensionalzatLion, the order of

2
magnitude of the new parameters is as follows: (a) B is of order 6 ; (b)

U is of order one; (c) r and s are of order one; (d) A is of order one; and

T

(e) p is of order one.

It can easily be shown that, if 8 = 0 (no rotational springs), the

system is unstable for zero load, P 0. and thus the B 0 case is ex-

cluded from the present discussion, which also allows the nondimensionaliza-

tion given by Eqs. (2-12) and (2-13) (division by a nonzero number). In

the case B 0. upon the application of a verv small load P, the system

snaps through an asymnetric mode (s # 0).

Static Analysis of the Model

The static analysis is performed by employing the energy approach.

For equilibrium

-,P

au T 2 2
- a 0 = 2(r - JA) - (A - r - 3s) 2r + 2p (2.14)

-- .0 18a - (A - r - 3s2) 6s (2.15)

By introducing a new load parameter

Q JA (2.16)

'I



the equilibrium eqtiations, Eqs. (2-14) and (2-15) become

(A- I - r2 - 392) r = Q

s(A -3 - r - 3) = 0 (2.17)

There are two possible solutions to Eqs. (2.14)

(i) Symmetric response s -= 0, and

2
(A - I - r ) r - Q (2.18)

(ii) Existence of asymmetric response, s # 0

A -3 =r 2 + 3s 2

2r Q (2.19)

The equilibrium positions, Eqs. (2-17) are plotted on Fig. 2-5 for

all Q, and on Fig. 2.6 as a load-deflection, Q-r curve.

On the basis of the results and by performing the stability test

(second derivatives), the following conclusions are drawn.

(a) For A < I there is no possibility of buckling and asymmetric

response (s 0 0).

(b) For I e A e 3 the response is symmetric (s - 0) and buckling

occurs through the limit point (pt. C on Fig. 2-6), positions between A and

C are stable, and the critical load is given by

c- 3.

JAr " f+ 2T (2.20)

12



(c) For 3 < A < 4 there is a possibility of asynuietric modes, but

for this range of A-values, point R is to the left of point C (Fig. 2-6),

i.e.

/A I. > 4 A -3 (2.21)
3

and buckling still occurs through the limit point. Therefore, P cris given

by Eq. (2.20).

mEE

2~ 
E B"6

C.

Fig. 2-5 Locus of Static Pquilibriumu Positions (model C).

13



(d) For A > 4 buckling occurs through the existence of unstable

bifurcation (Pt. I), poshi ions A to IS are stable, posit tons HCO and B1O are

unstable, and the critical load is given by

Qcr 2v. , or (2-22)

cr

-2 (A-1''
0 )

Fig. 2.6 l.oad-Displacement Curve for Model C.

14



SECTION III

IDEAL IMPULSE

Statement of the Problem:

Given a structural configuration subjected to loads that fall under

the category of an ideal impulse, is there a possibility of dynamic in-

stability, and if yes, what is the level of the impulse for this occurrence?

Clearly, before one can estimate the critical condition, one must define

what is meant by dynamic instability. Some systems, regardless of the

magnitude of the impulse, will simply oscillate, linearly or nonlinearly,

about.the null positions. Others, if the impulse is small will oscillate,

but as the impulse increases they have a tendency to move away from the null

position. Finally, there is a group of systems, which behave a little

differently from the second group. For small impulses they simply oscillate,

but as the impulse increases a certain value is reached at which and beyond

which the system will oscillate but with a higher amplitude than that for

impulses smaller than this certain value. Regardless, though, of the par-

ticular ca.e one can always associate the magnitude of oscillation amplitude

to the value of the impulse. In such cases a critical impulse can be related

to a maximum amplitude (this is the case in deflection limited designs).

There is always a relation between the system behavior ,inder impulsive

Zoods and the static equilibrium characteristics of the system. In the

groups discussed above, the first corresponds to systems which have unique

and stable load-deflection equilibrium states, or a stable post-buckling

bifurcational branch. The other two correspond to systems that exhibit

either limit point instability or an unstable bifurcational branch in the post-

buckling region. The emphasis, therefore, is placed on the last two groups
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and criteria for stability and estimates of critical conditions are

presented through the models discussed in Section 11.

Model A

Consider Model A shown on Fig. 2-1, assume that the bars are weight-

less and that the mass of the system is concentrated at point B. Further-

more, assume that the load, P, is suddenly applied with very short

duration time, To , and that the impulse (PTo), is imparted instan-

taneously into the system as initial kinetic energy.

Through impulse-momentum one obtains the following relation

PTo \l% (3.1)
0 2 s; ine

where e = de/dt at O = e
0 0

Since the system is conservative, theni

U+ T° = const. = rT  (3.2)

where U 0 denotes the total potential "tinder zero load", T° is the kinetic
T

energy, given by

To 1 mL2;2 (3.3)

Note that To is the initial kinetic energy imparted instantaneously

by the impulsive load.

Finally the expression for Uj is give by

Uo [j + sine - fl _+sine 2  (3.4)T
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In order to understand the "concept' of stability or instability tnder

an impulsive load for this one degree of freedom model, let us consider

Fig. 3.1, which is a plot of U0 versus 0-0
T

According to Eq. (3.2), and since T0 is positive definite, motion

is possible if and only if

0 T

This implies that, for a given initial kinetic energy, Eq. (3.3), and

consequently a given impulse, say T = D (see Fig. 3.1 - total potential

presented in nondimensionalized form), motion is confined in the region

8 < 6 - e < a . It is clearly seen then that, as long as T.f = D <

/2 l + sine ) the motion of the system is bounded and it contains

only the stable "zero load" static equilibritim point, I1. Such a motion

is termed "unbuckled". For the motion to cease to be "unbuckled", i.e.

to become unbounded and cease to include only the inilial stable static

equilibrium point, :1, D must be, at least, equal to the value of UT at

the unstable point C. Then that point (C) can be reached with zero

velocity and the motion can become unbounded. Clearly if D is even

slightly higher than the U0 - value at point C, the motion does become
T

unbounded and it can contain other static eqiilibrium points, such as

point C. Such a motion is called "btckled" and a critical condition

exists when the impulse is large enough to satisfy the relation

T U (C) (3.6)

Introducing nondimensionalized time and load parameters

17



-= (2k/n) 1/2 (3.7)

p 2P'/kil

t hen

O-0 * 2 (!LE
T L= - (!) d o (3.8)

k kL 2k i0

From Eq. (3.1) one obtains

(pr 2 (d 0'(39

Use of Eqs. (3.6), (3.4) (3.8) and (3.9) yields the expression for

the critical impulse or

(pTo) 2o )2 - 11 + sinGo] / sin 0 (3.10)

Two observations are worth mentioning at this point: (a) Because

this is a one degree of freedom model, the critical impulse (pT o)cr given by

WK Eq. 3.1 represents both the minimum possible (MPCL) and minimum guaranteed

(MGCL) values as defined in Ref. 21. In other words Hsu's (17-18) "sufficient

condition for stability and instability" boundaries are coincident; (b)

Although the concept presented so far is clear and it leads to a criterion

and estimate of the critical condition, it might be impractical when applied

to real structures. In the particular example shown so far, it is clear that,

according to the presented concept of dynamic instability, "buckled" motion

is possible if the system is allowed to reach the potition 0 = n/2. In many

cases such positions may be considered excessive, especially in deflection-

. 18
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limited designs. In such cases, if 0 cannot be larger than a specified

value, then the allowable impulse is smaller and its value can be found

from Eq. (3.6). if C is replaced by the maximum allowable value of 6, say

9L" In this case
L'

(PTo)cr =2[/l + s in8 L  I + sin 00 /sin 0 (3.11)

Related with this discussion is the broad definition of stability

proposed by Hoff (22): "A structure is in stable state, if admissible

finite disturbances of its initial state of static or dynamic equilibrium,

are followed by displacements whose magnit,,des remain within allowable

bounds during the required lifetime of the structure."

Model B

Following the same notion as for Model A, the expression for the

critical impulse, (pT r is given by

(PT e (3.12)

where

tka 2 1/2 P
= ) t , 2 (3,13)ks2

* and I is the bar moment of inertia abot, the hinge.

'I'he expression for the total potential, the kinetic energy, and

impulse-momentum are given by (respectively)

62
UT = ka2 si,12 0 - PL( - cos 0 + sin 0) (3.14)

II (d 0 2  ( .5

P1, (3. 15)

) e) d(
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where I is the moment of inertia of the mass m about the hinge.

In this case also, if the design is deflection limited, 0Lp then

T ka mus be replaced by U. ka in and the allowable

impulse in this case is given by

L sin (3.17)(P 0 allowable e (

Another similar approach that may be used for finding critical impulses

is presented herein through Model B. It makes use of Eq. (3.2), but in-

stead of associating critical conditions with characteristics on the

"zero load" total potential, the critical condition is associated with

characteristics of the phase plane.

Eq. (3.2) for this model, in nondimensionalized form becomee

62 + sin = r(PT e12 (3.18)

where 0 = do/dT.

Clearly, if (PT o)I 2 < I, Eq. (3.18) denotes a closed curve about the

null position 6 = 0 0) in the phase plane. In this case the motion is

called "unbuckled". (See Fig. 3.2). When [PTO Eq. (3.18) denotes

a curve which can escape the closed loop and thus the motion becomes "buckled".

Therefore,

(PT L (3.19)

o cr c

Model C

In order to simplify matters, it is assumed that the three bars are

4 weightless and that the impulse is imparted into the system through two

21



Fig. 3. 2. Phase Plane Curves for Model B

masses, mn, at points B and C. This is also used in determining the initial,

kinetic energy of the system. Thus

(PTO) - 2iLi~~- Ir (3.20)
dt I

and

T0=m2 (Ar1 2

i ~dr)jr J

where T0 is the small duration time.
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Introduction of the new nondimensionalized parameters

t ql1/2

anhd 2k, (3.21)

yields

(pr \d) r (3.22)

The concept of dynamic stability is similar to the one used for Models A

and B.

-0 + o io (3.23)
Ti

A critical condition exists, if the impulse, (p o), imparts sufficient

kinetic energy into the system so it can reach, with zero velocity, an

unstable static equilibrium point on the "zero-load" total potential,

-o, and thus the motion can become unbounded.

Clearly, then from Eqs. (3.22) and (3.23)

1/2

(P~ro)cr v fil(6) ,F2 1-0 (unst. st. pt.) (3.24)

Thus, before (PTo)cr can be found, one must have knowledge of all

stationary points and of their character (stable, unstable, etc.). Starting

with the expression for OT [Eq. (2.11) with p = 0], requiring equilibrium,

and performing a stability analysis the following results are obtained.

St at ionary poini s aod I lie i r chiracl er

Pt. I at ('vA 0) Stable (Relative Minimum)
Pt. 2 at £(- A + 4-4)/2,03 Unstable (Relative Maximum)
Pt. 3 at [(-VX - .JK2)/2 0] Stable (Relative Minimuma)
Pt. 4 at A- /2 , w1A-4/21 Unstable (Saddle Point)
Pt. 5 at /-'2I2 , - 4/2] Unstable (Saddle Point)

23



*1

We observe that there are two possibilities of the motion becoming un-

* bounded; (a) by reaching Pt. 2 with zero velocity, in which case the system

.C will definitely move toward Pt. 3 (far stable point);in this case the corre-

sponding critical impulse is termed (MGCL) because U(Pt. 2) i the largest

of all U (Stationary pts.). Thus, regardless of the path of motion in the r,

a space, starting from (,/A,O),-the motion will enclose at least one unstable

point and will become unbounded; (b) by reaching either Pt. 4 or Pt. 5, in

* which case there is a single possibility of the motion becoming unbounded and

enclosing one unstable point; note that, in this case, there is a possibility

of unbounded motion, but this is not guaranteed, because the system can simply

oscillate in the r, s, space bounded by lines of equal potential, to (Pt. 4)

* enclosing only the near static stable point, Pt. 1, and either of the "saddle"

points, Pt. 4 or Pt. 5; thus, the corresponding critical impulse is called

(MPCL).

(MPCL) and (MCCL) denote upper and lower bounds of (PTo)cr.

By Eq. (3.24),

(MPCL) (PT 0 )cr 3AJ- - 1 (3.25)

l~~~ ~ (12 2 .4)]/2
(MGCL) (PT0)cr - [5A-2-3$, A (A+2+I47 A)2

* Note that critical conditions can exist only for A 4. If A Z 4, there

is no far stable static equil. pt. on the "zero-load" total potential.

The results are plotted on Fig. 3.3.
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Fig. 3. 3 Upper and Lower lounds for the CriLical Ideal Impulse (Model C).
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SECTION IV

CONSTANT LOAD OF INFINITE DURATION

The concept of stability, for this type of loads is also based on the

definition of "buckled" and "unbuckled" motion as for the ideal impulse

Moreover, the criterion for stability and the related procedure for estimat-

ing critical conditions will be presented through the same three models.

Model A

For this case, the sum of the total potential and kinetic energy is zero

-P -
u + T 0 (4.1)
T

-p
Fig. 4. 1 shows plots of UT versus 0-0o for various values of the applied load,

T0

p. It is seen from this figure that for p < 0.432 motion is confined between

the origin and 0-0 0 A, or the motion is "unbuckled". A critical conditiono

exists when the motion can become unbounded by including position A" (buckled

motion). Thus, the critical load is found by solving the following equations

-p cot 0
UT 0 and p LA + sin0 - Vl + sin ° 0 co (4.2)

0.i+ sin 0

with

d2-P
d UT

d8 2

The inequality condition ensures that UT 0 at an unstable equilibrium

point. The simultaneous solution of Eqs. (4.2) yields the dynamic critical

load and the corresponding position of the unstable static point, A" on Fig.

4.1.
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The results, for this model, are presented graphically on Fig. 4.2.

For this load case, also (MPCL) and (MCCT,) are one and the same level.

Model B

For this model, the critical condition is estimated through the simul-

taneous solution of the following equations

U . Ika 2 sin 2 0 - PL(l - cos 0 + sin 0 = 0

T2 L~ ) 43

ka2 sin 0 cos 0 - PL (sin0 +e cos 0) - 0 (4.3)
d2 PUT

and - < 0 (at the solution)
do

2

The results are presented graphically on Fig. 4.3 as per versus e/L.

For this model, critical conditions are also related to characteristics of

the phase plane curves. Fig. 4.4 shows plots of U,, versus 0 for various

values of p, as well as 0 versus 0 (phase planie).

The energy balance equation, in nondimensionalized form is

6 + sin 20 _ p ( - cosO + sin9) = 0 (4.4)

Clearly from Fig. 4.4. if p < per the motion is "unbuckled", which

implies that for these loads the system simply oscillates about the static

stable equilibrium position (AI or A2 ). The load p is critical, (p e ) if

the motion can escape through point B3 ('buckled motion").

Note that for single degree of freedom models P corresponds to both* cro

ihe lower and upper bounds (MPCL & MGCL).

Model C

The concept of dynamic stability is similar to the one used for one-

27



degree-of-freedom models. The only difference is that, in this case, there

is a lover bound (MPCL) and an upper bound (MGCL). The lover bound corre-

sponds to loads for which there in a possibility of "buckled" motion, while

the upper bound corresponds to loads for which the motion will definitely

be "buckled". Because the existence of bounds is dependent upon the value

of A, the discussion will be based on the range of A values.

.60

.50

&0.005s0*
.40-

.30-

.20-

0-0

0.1.00 .3

.20-9
0

Fig. 4.1. rotal Potential versus Displacement for Various Loads (Model A).
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Fig. 4.2. Static and Dynamic Critical Loads (Model A).
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Fig. 4.3. Static and Dynamic Critical Loads (Model B).
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Fig. 4.4. critical Conditions for Model B constantI Load of Infinite Duration
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(a) For A < 3 there are no saddle points and the system behaves as a one-

degree-of-freedom system. Therefore, for this case the governing equations

are

UTP = 0 ; (A-l-r2 ) r = Q;
T

2-P
and d U

-T< 0 at the solution (4.5)
dr

2

Note that, for this case, "buckled" motion is both possible and guar-

anteed. Thus the upper and lower bounds are coincident.

(b) For A > 3, there exist "saddle" points on the total potential, in addi-

tion to the relative maximum point. All three are unstable static equilibrium0

points (stationary points). Therefore, the motion can become "buckled" either

through a saddle point or through the relative maximum point. It will next

be shown that, in certain instances, "buckled" motion is possible and in others

guaranteed. Before proceeding with the analysis the following observations

are made:

Parenthesis 1: For a specified load the total potential has a lower value

at a "saddle" point than at a relative maximum point. This can be proven

-P
through computation of UT at the corresponding points.

T

Parenthesis 2: Regardless of the value of p and A (for A > 3), the total

potential at any a position, but a fixed r-position (r r <J -3) has a

higher potential than that of a position characterized by r - r and an a-

* position on the ellipse

r + 3s 2 a A - 3 (4.6)

* Note that the ellipse, Eq. 4.6, defines the locus of static equilibrium

points ("saddle" points).
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Proof: Let AU denote the difference in (olial potential, between the any

a-position and that of an s-position on the ellipse (r = r). Then, from

Eqs. (2.11 and 4.6)

ali .tr 2- 2 2%/ + (A -r 2 382)2- 2p(JX r)-T )-

-[4A - 2 ;2- _ p

-2 29 1 - 22

3 (r + 3s A) + + (A - - 3s2)
1 -22

(A - 3 - r 3s) 0 Q.E.D. (4.7)

Clearly, the difference is zero when s is on the ellipse and positive for

all other a.

Parenthesis 3: For p > iA + 21A-3[loads higher than the static critical

load - see Eq. (2.20)], if rt < r2 ! T3, then the total potential on the

ellipse, Eq. (4.6), is higher at r2 than at r

Proof:

Let AUT O U(r) - U(rl (4.8)

Then, by Eqs. (2.11) and (4.8)

AU. = 2 (r2-rl) p - V-- (r2 + (4.9)

Since r2 - rI is positive A7,P, is positive if p > .- + + r.

But p > / + 2/A - 3, thus

if ,J + 2 %f - 3 > rA + (r 2 + r ) then

definitely p > vA + (r2 + rI).

Clearly, from the statement of the parenthesis 2%A 3 > r2 + r , which
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concludes the proof.

As the load is increased from zero, at low values of p, the zero

* potential lines in the ru-space enclose only the near static equilibrium

point and the motion is "unbuckled". At some value of the load the first

unstable point(s), at which the total potential can become zero, is (are)

" the "saddle" point(s) according to Parenthesis 1. At this load there is

a possibility of "buckled" motion through the saddle point. This load,

then, is called MPCL. The governing equations for finding this critical

* load, as well as the corresponding position (sr coordinates) of the saddle

point are:

Up (r2 + 9s -2 2Ar + A) + 1 (A -r - 0
T 2

(A -I-r 2 _ 3s2) r =p -j

A -3 - r - 3s2  0 (4.10)

Note that "saddle" points are unstable, thus, there is no need for applying

the stability requirements.

The solution to Eqs. (4.6) yields

-4(MPCL): P cro 3(X-~ 1)

and "saddle" point at r A'A/K. 3; s - ( - ) . (4.11)

The solutions to Eq&. (4.5) and (4.10) are plotted on Fig. (4.5).

* -As far as the case of the upper bound is concerned (MGCL), there are

two ways through which a guaranteed "buckled" motion can be achieved. One

way is to require OT at the relative maximum unstable static point to be zero.
T
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In this case the motion is definitely buckled and the critical load can

be obtained from the solution of Eqs. (4.5). The second way is for loads

which are equal to static critical load for asynunetricbuckling (,,A-+ TA7-3.

In this case, although the total potential at the relative maximum point is

higher than zero, guaranteed "buckled" motion can be achieved because of

Parentheses 2 and 3. In this latter case, Pcr (MCCL) is given by the expres-

sion for the static load. Both results are shown graphically on Fig. 4.5.

Note, that the upper bound is the smallest load computed, either by

the solutions of Eqs. (4.5) (for 47 A - 7.3), or by the static critical

load (for A a 7.3). Moreover, for very large A-values the upper and lower

bounds approach each other (3J3.
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SECTION V

CONSTANT LOAD OF FINITE DURATION

Statement of the Problem

Consider a model at its natural (unloaded) position. At time t 0

a constant load P is applied suddenly on the system and it acts only for a

finite duration time t- To . After the release of the force P, the system

moves because of the imparted energy during the action of the load P . Theo

concept of dynamic stability for this particular load case is similar to

the concept used in the cases of "ideal impulse" (Section III) and of "con-

stant load of infinite duration" (Section IV). Thus, for all three cases the

concept of dynamic stability is based on the definition of "buckled" and

"unbuckled" motion.

If the energy imparted into the system, through the load P, is

insufficient for the system to reach the tunstable static equilibrium point

on the "zero load" total potential, with zero velocity (zero kinetic energy)

the motion is called "unbuckled". In this case, the system is dynamically

stable. Consequently, the criterion for dynamic stability requires that

the dynamically stable system possess total energy (at the release time, T )

at a level below the level of the potential at its unstable static equilibrium

point for the "zero-load" system. This is fully substantiated by mathematical

arguments in the next section. On each individual model, the criterion is

invoked and estimates for critical conditions are found. The extreme cases

of T0 - (constant load of infinite duration) and To -* o (ideal impulse) are

special cases of the present one.

General Procedure

Since the system is conservative during the action of the load, then
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U P + TP  0 for 0 t TT 5.1

where T is the time of release of the load P. Similarly,
0

UT +T = U (T0) + T° (T0) for t > TOT T (52

The continuity of the kinetic energy at the time of release, T, is expressed

* ~by T
T (T) =T P (T) (5.3)

0 0

Use of Eqs. (5.1) and (5.3) into Eq. (5.2) yields

0 T°  o P
U0 T +  = u T ( T  U T ( T ) for t T (5.4)

If 0 -indicates the position of the unstable static equilibrium point for

P = 0, the critical condition is met (buckled motion is possible), if the

load P, acting for time TO , imparts sufficient energy into the system to0 0

equal the potential UT (LO) of the "zero-load" system at the unstable position

0
L . Thus, the stability criterion is expressed by~U

0 P o 0
U T(To) UT (T)UT (LU) (5.5)

The equality sign implies a critical condition, wh4le the inequality refers to

a dynamically stable situation.

Note that Eq. (5.5) relates the applied load P and the release position,

L (one equation in two unknown quantities, if one views the release positionP

Lp at time To, as one quantity). In addition, through equation (5.1), one may

relate the applied load, P, the release position, Lp, and the release time, To,

for a specified path of motion. For one-degree-of-freedom systems there is

only one path, but for two-degree-of-freedom systems there are several paths;
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for such cases, the path is determined through the brachistochrone problem

of the system. This is so, because one may view the problem as follows:

Find the smallest time T for a given load P such that the motion can become
0

"buckled".

A critical condition is obtained by specifying the load and finding,

through the simultaneous solution of the above two mentioned equations, the

corresponding release time, To
cr

These steps are next clearly demonstrated for each one of the three models.

Model A

For this particular model, the unstable stationary points on the "zero-load"

total potential are located at 0 = + TI/2 [see Eq. (2.2)]. Then, Eq. (5.5),

with the equality sign), becomes

p (cosO - Cos 0cr) " (5.6)

where B) is the release position, L , of the system. Note that 0 = O(T 0)
cr cr cr

This equation, Eq. (5.6), is one of the two needed equations for finding a

critical condition. Before finding the second equation, from Eq. (5.1), the

following simplifications are introduced.

First, it is assumed that the bars of the system are weightless and the

mass, m, of the system is concentrated at joint B (see Fig. 2.1). With this,

the kinetic energy of the system is given by

T = I mL ( ) (5.7)

Next, the following nondimensionalized time parameter, T, is introduced.

2k-St' (5.8)

Finally, the kinetic energy, T, is nondimensionalized in a manner similar
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to the total potential

T/kL 2  (5.9)

Then Eq. (5.1) becomes

-P P -P +dO 2

UT + = u (T-U-) = 0 (5.10)

The critical condition is obtained from Eqs. (5.6) and (5.10). The approach

one may use is as follows: first specify the value of p (these values must

be larger than the critical load corresponding to the infinite duration case)

and through Eq. (5.6) solve for 8 cr,. then use Eq. (5.10) to find the correspond-

ing duration time To, or

cr , _T (5.11)

where UT is given by Eq. (2.2).

Note that computationally it is much simpler to assign values of 0
cr

~(starting with S + 81 where O1 is a small increment and increase it to values

;,} approaching the angle corresponding to the infinite duration case) and solve

; for p and 'Or from Eqs. (5.6) and (5.11) respectively.

*9 A computer program is written and data are obtained through the Georgia

Tech high speed digital computer CYBER 70, Model 74-28. These data are present-

ed graphically on Figs. 5.1 and 5.2. Fig. 5.1 shows critical condition, for

various imperfection angles, 80, in terms of p and T cr' Note that as the

Ocrr

the value of pcr for the infinite duration case. The same data are presented

on Fig. 5.2 as plots of (pT0 ) cr versus TOcr Through this figure, it is

shown that as T - o the values of (pTo cr approach the critical impulse values,
oc4
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as obtained in Section III.

model B

For this particular model the unstable stationary points on the "zero-load"

total potential are also located at = + n/2 [see Eq. (2.5)]. Then, Eq. (5.5)

becomes

2 p(l - cosO + e sinO ) = 1 (5.12)cr Cr

-- /L PL/ka2

where e e/L, p = and 0 is the position of the system at the critical

time of release, T
Ocr

According to the nondimensionalization employed for this model in Section

III, the kinetic energy and time parameters are

62 (k 2/j).1 t
= , T = (ka/ t (5.13)

where

dO/dT.

For this model then, Eq. (5.1) becomes

+ 0 = 0 (5.14)

From Eq. (5.14) one may solve for the crital duration time, r0  , or
• .Ocr

To 4~J 7 V (5.15)
cr dT

where the expression for UT is given by Eq. (2.5). For this model as well as

for model A, a computer program is written and data are generated for finding

critical conditions (p and corresponding r ). Computationally, values of
cr

ecr are assigned and the value of p is found from Eq. (5.12). Then, the

critical release time T is evaluated from Eq. (5.15). The generated data
Ocr

are presented graphically on Figs. 5.3 mid 5.4. Note that, as the duration
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time becomes large, the corresponding load approaches the critical value

for the case of constant load of infinite duration, Pcr (see Fig. 5.3).

Similarly, as the duration time approaches zero the corresponding (pro)cr

approaches the value of the critical impulse (see Fig. 5.4). This value

is equal to 1/i and it can also be derived analytically from Eqs. (5.12)
and (5.15). If the expression for .P is used in Eq. (5.15), one obtains

0 dO
0 cr i -cos+ e sin8  2  

(5.16)
°cr =  0 _ sin 0

1 - cosO + a sine
cr cr

Next it is observed that as the critical duration (release) time

becomes very small the corresponding release position, 0 cr , also becomes

, very small, for every fixed value of ;. Then, for very small ecr values;

and consequently S-values, Eq. (5.16) can be written as

" 0cr a _ d8
T ecr (") dO =0 .c (0r Oc
Ocr o cr cr o Ocrucr

0 0r

-20cr (cr r = 20 cr (5.17)
B0

*' Similarly, from Eq. (5.12)

P =(5.18)
cr

Thus,

(PTo cr

Model C

The expression for the "zero load" total potential is given by

-o= 2 2 2 22 (.9
SUT = (r+ 9s - r+A)+ (A-r 3s (5.19)

Starting with U, requiring equilibrium and performing a static stability
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analysis the following stationary points are obtained (see Section Ill).

Pt. I at (f/f,0) Stable(Relative min)

Pt. 2 at[(/K - /A-4 )/2,0] Unstable (Relative max)

Pt. 3 at[(fiA + JA- )/2,0] Stable (Relative min)

Pt. 4 at [-V/2,.A -4,2] Unstable (Saddle point)

Pt. 5 at L-AI//2, - VA4-4/2] Unstable (Saddle point)

For simplicity, it is assumed that the three bars are weightless and

the only massive parts of the system are two masses, m, concentrated at

the joints B and C. Moreover, the nondimensionalized kinetic energy is

expressed by T T where T characterizes the kinetic energy andT2kL2 '

- 1 dr fd. .s\2  _.l [.+s" ( . "(5.20)
T 2 L T 'dT, L 20

where ''
and T = t

Clearly, saddle points exist for A > 4. For this range of A-values, the

"zero load" total potential value at the saddle points, pts. 4 & 5, is

smaller than the corresponding value at the relative maximum, pt. 2. On

the basis of this observation the motion can possibly become "buckled"

through the "saddle" points, pts. 4 & 5. The corresponding condition for

this case is a'possible critical condition". On the other hand if the

imparted energy, by the applied force at the release time, is suifficient to

reach the relative maximum (unstable) static equilibrium point, pt. 2,

"buckled" motion is guaranteed and the corresponding critical condition is

a guaranteed one. The former is termed suifficient condition for dynamic

stability, while the latter suifficient condition for dynamic instability by

Hsu [173.
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Next, the computational procedure for finding the possible critical

condition is outlined.

Through Eq.(5.5)(in a nondimensionalized form) one obtains

2j (rn/-r)l _ (A-1) (5.21)T=O2

where Tr0 is the release time.

Moreover, Eq. (5.1) in nondimensionalized form holds for (0< < To ).

For a given path of motion, integration of Eq. (5.1), yields a relation

between the time of release and the position at that instant. Note, that

the problem has been cast in the following terms: for a given load, p,

find the smallest release time,Toc0 , Such that the system may reach an
OcrP

unstable point (saddle point for the minimum possible critical condition)

with zero velocity, Eq. (5.21). Since one is interested in obtaining the

smallest release time, T r, and since the position at the time of release

is path dependent, one can solve the problem by considering the associated

brachistochrone problem. The brachistochrone problem makes use of Eq. (5.1)

for this system, and through its solution one obtains the relation between

the smallest release time, T Ocr , the position at the instant of release, as

well as the path that yields TOcr. The details of the solution to this

brachistochrone problem are presented in Appendix A. The solution to the

brachistochrone problem yields that the path is characterized by sao and the

relation between TrOcr and the position of the system, rcr, at TOc r is

dr
rror (5.22)Or= j/A- '14;(,r-r)-2(r/A)2-(A-r2)

Computationally, it is simpler for one to assign values of rcr (starting with

values close to the initial position, r = vf7- and s 0), solve for p through

Eq. (5.21) and then for TOc r through Eq. (5.22).
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Note that for the case of the minintim guaranteed critical condition

Eq. (5.21) is replaced by a comparable equation which employs the value of

the'lero load" total potential at the relative maximtim unstable static point.

Numerical results are presented graphically on Figs. 5.5 and 5.6, for the

minimum possible critical condition only, and various values of A. The curves

of Fig. 5.5 depict critical conditions in terms of applied load, p, versus

critical release time, Tocr. One may observe that as the Ocr increases, the

corresponding load approaches, asymptotically, the value of pcr for the infinite

duration time. Fig. 5.6 presents the same results as Fig. 5. 5, but in terms

of (Pro)cr versus critical release time Tocr. Note that as Tor approaches
cr

4 zero, the value of (PTo)cr approaches that of the critical ideal impulse.
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SECTION VI

THE INFLUENCE OF PRELOADING-CONSTANT LOAD OF FINITE DURATION

Statement of the Problem
P0

Consider a model at its stable equilibrium position LS when

S.subjected to an initial static load P . At time t = 0 an additional
0

* constant load P is suddenly applied to the system and acts only for finite

duration time t m T0. After the release of the force P, the system moves

because of the acquired total energy during the action of the load P.

The system will be called dynamically stable if its motion is "unbuckled",

in the sense described in previous sections. Since the systems under

consideration exhibit either limit or unstable bifurcation point insta-

*bility, the system is stable if the energy, imparted through the action of

the load P, is insufficient for the system to reach the unstable static

equilibrium point for "P -load" total potential of the system with zero
0

velocity (zero kinetic energy). For each individual model, the criterion

is invoked and estimates for critical conditions are found. The extreme

cases of T- (constant load of infinite duration) and T 0 O (Ideal Im-

pulse) are treated as special cases.

* General Procedure

The concept of Dynamic Stability and the general procedure as well are

extensions of those used in the cases of the constant load of finite

6 duration. The equilibrium positions of:the preloaded system are given

as solutions to
P

OU 0 (L)
T
cL =0 (6.1)
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where L is the position of the system. Thus, one may find all the "P -
0

load" static equilibrium positions including the near stable position
P P
L S as well as the unstable position L U thrcugh which "buckled" motion

can be realized (see Fig. 6.1).

Keeping the same generalized coordinates for all models and the

same expressions for the total potential and for the kinetic energy, one

may apply the concepts already developed. These are next explained through

the use of Fig. 6.1, which holds for one-degree-of-freedom systems, but

the explanation is applicable to all finite-degree-of-freedom systems.

The system is initially loaded quasi-statically by load p and it
P

reaches point A (L - L °; stable static equilibrium point). Then, a load
4

p is applied suddenly for a time ° (finite duration). At T the load p

is removed.

A potential U-P is defined, such that U 0 at T 0 or
P T T T

L L (see Fig. 6.1).
S

6 Po+P + :-Po P P +P (6.

T T L.T _ T \S

Since the system is conservative, then during the action of p one may

write
P +P P

6P + i O 0 T° (L " 0 S r • T (6.3)

P +P
where T 0 is the kinetic energy of the system. This equation, Eq. (6.3),

is equivalent to Eq. (5.1) of Section V. Making use of Eq. (6.2), Eq. (6.3)

becomes

P +P P +P P +P P
0o + i 0o L,o o x'o
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Fig. 6.1. beftnit ions of Total P'otentils (One-degrec-or-frcedom system)
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For times greater than To , the system is also conservative and conser-

vation of energy yields

P 0 I>

T T 0 T O (6.5)

where the right-hand-side represents the level of the system energy at the

release time T , and Eq. (6.5) is equivalent to Eq. (5.2) of Section V.0

If the force p has imparted sufficient energy into the system, such
P

that it can reach the unstable point B (L = L 0; see Fig. 6.1) on the

"p 0 -load" potential with zero kinetic energy (velocity), then "buckled"

motion is possible, and the system becomes dynamically unstable.

The governing equations for predicting critical conditions are obtained

from Eqs. (6.4) and (6.5).

By requiring kinematic continuity at i = T one may writeo

P +P P
(T)=T 0(T) (6.6)

0 0

From Eq. (6.4) one may write

P +P P +P P P +P
0 0 L ( ) (6.7)

T  r u0

Substitution of Eqs. (6.6) and (6.7) into Eq. (6.5) yields

P P P +1 Po+P P
-o -o oT ( T 0o) + T  L ) (6.8)UT To T=

for -r > -0

Next, a critical condition exists, if the system can reach point B (see

Fig. 6.1) with zero kinetic energy [To 10 Thus, denoting the

critical condition by p, T , one may write
cr

P (LP\ P -Po+P+ Po+P Po.

T u- OTr ( 0T + UT (LSO) (6.9)

cr rK5



Note that Eq. (6.9) relates p, T and the position of the system,0
cr

Lcr, at the instant of the release of the force p. Please observe (as

also explained in Section V) that the above described critical condition

depends on the evaluation of two parameters, p and T . One approach iso

to prescribe To and find the corresponding per and the other is to pre-

scribe p and find the corresponding r . The two arc equivalent. Re-
cr

gardless of the approach, Eq. (6.9) relates three parameters p, r (or0
cr

Pcr' T0) and Lcr (the position of the system taken as one parameter).

The second (needed) equation is obtained from Eq. (6.4). This equa-

tion (see Section V) is used to relate the load p, the time of release,

09 and the position of the system at the instant of release. In order

to find, for a prescribed load, the position of the system at the instant

of release, one must specify the path of motion. For one-degree-of-freedom

systems there is only one path and this is easily accomplished [see Eqs.

(5.13) and (5.17)]. On the other hand, for a multi-degree-of-freedom

system there are numerous possible paths leading to a multitude of posi-

tions for a given release time. In such cases, if one is interested in

finding a lower bound for the critical conditions, he may find the path

that yields the smallest possible time. Thi- may be accomplished by

solving the corresponding "brachistochrone" problem (see Appendix A). The

solution to the "brachistochrone" problem yields the path of motion which

yields the smallest possible time. Thus, Eq. (6.4) along with the path

of motion, relates the release time 7 and system position at the instant
Io

of release [see Eq. (5.24)]. TIhese steps are clearly demonstrated for

each of the three models, in the subsequent articles.

Moreover, if one is dealing with a deflection limited design (the
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position of the system cannot exceed 1.1 .e;u Fig. 6.1) then O1. 0)

"T u

is replaced by UTO(L o), in the outlined computational procedure.
T L

Parenthesis: The cases of ideal impulse and suddenly applied load of

constant magnitude and infinite duration, nviy be obtained as special cases

raf the present procedure.

However, critical conditions for these two load cases may also be ob-

tained independently.

For the ideal impulse case, one may relate the impulse to an initial

kinetic energy, and from conservation of energy

UT-PO + O = UPO (L O + T.o (6.10)
T T

Then To is critical (related to the critical ideal impulse) if the

system reaches position LPO (pt B of Fig. 6.1) with zero kinetic energy.u

Thus

-Po = 6Po .Po -I'o (Mo) (6.11)
i T s ki U

cr

For the second extreme case 1 ) , may be obtained from Eq. (6.3)
0 cr

or (6.4), which, for this ase, holds true for all T (0 T T ). Thus, Pcr

corresponds to the solution of

? +r P +P 1P +1,P
(L ) 0 + (Lao) (6.12)

T u s

p+p
where L denotes the unstable static equilibrium position of the

u

system when the static load is equal to p + p.

57



Model A

For this particular model, tile static stability analysis is presented

in Section V. The geometry of the model is given in Fig. 2.1 and the static

response in Fig. 2.2.

In evaluating the effect of preloading three imperfection angles are

chosen (e 0.005, 0.010, 0.020), and for each 0 - value the system is
640 0

initially loaded quasistatically with a p0-load smaller than the Pcr-static.

Then, the system is loaded dynamically. The following values are used in

the dynamic analysis:

e0 f 0.005 P 0.440 ; po 0.340, 0.380, and 0.420
0 c

A = 0.010 Per 0.415 p0 = 0.300, 0.360, and 0.400

e = 0.020 Per 0.384 p0 0.300, 0.340, and 0.370

First, the extreme cases (T-T o and T -. o) are analyzed, by employing0 0

Eqs (6.11) and (6.12) respectively.

The ideal impulse, (pr ) is related to the initial kinetic energy

[in the nondimensionalized form; see Eqs. (3.8) and (3.9)] by the expression

2 [FPol 2
(P 0 " i0  (6. 13)

sin(O )

* P
where e0 is the stable static position (angle 0) under p load.

The critical ideal impulse (PTo)c, is obtained by substituting Eq.
o cr'

(6.11) into Eq. (6.13), or

I

(pr" fp- ')[Po( o /J (6.14)
o cr sin 0.)
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where u  is the unstable static position under p0 load, and the expression

for the total potential is given by Eq. (2.2) by using p0 wherever p appears

in the equation. The numerical results for all 0, p0 combinations are

presented in tabular form on Table 6.1.

Table 6.1 Critical Ideal Impulse, (PTo cr' Model A.

e 0 0.005 e= 0.010 e= 0.020

P0  ocr o (r) o (ocr

0 162.000 0 81.000 0 40.000

0.340 8.246 0.300 6.980 0.300 2.900

0.380 3.498 0.360 2.247 0.340 1.207

0.420 0.758 0.400 0.486 0.370 -0.338

0.440 0 0.416 0 O. 384 0

Note that the first ra'w results are Lhtailed from Eq. (3.10) ol

Section 1II1 Note .lso Ihalt aS the val,,' ofl Is 0lpproacIhes the value of

the static crit lcn[ load the addilionallv imposed (crit lcnl) impulse tends

to zero. This is reflected Iy the res,|lts o the last row (Table 6.1).

The critical load for the case ot r - , pe is obtained the

following steps, for a given 0., Po comlbinatIon (a) solve Eq. (2.3) given

below, for 9 0 (stable position)

" =[.I + .' 1 .9 / + -it + ,I cut e/ .J + sill 0 (6.15)

(b) Stat ic eqtsi Iibr itm po)- it ions airec harac'terized by Eq. (2.31) for

loading p0 + p, or

P + [ r T, - /JT4- J cot 0/ ./I + sin 0 (6.16)
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(c) Eq. (6.12) for this model is given below.

[,/I + sin 0 -/l + sin 9j2 - (p0+p) (Cos 00- cos 0) =

+ sin c s- P1 + sin 0 o0 (6.17)

The simultaneous solution of Eqs. (6.16) and (6.17) yields 0 and

Pcr " Note that since Eq. (6.17) must be satisfied at an unstable point

(0Po+P) the stability test may be used to ensure this, or

2 . PO+p" d UT
T< 0

d62  PO+PdO2 0

I U

The numerical results for all 00 p combinations are presented in

, tabular form or Table 6.2.

Table 6.2 - Critical Dynamic Load, p
cr

(Constant Load of Infinite Duration: Model A)

0 U.UUU5 U .UL U .020

PO Pcr Po+pcr o P r Pp+p cr Pcr* oooocoocrco Pop+crr

0 0.4320 0.4320 0 0.4010 0.4010 0 0.3690 0.3690

0.340 0.0940 0.4340 0.300 0.1090 0.4090 0.300 0.0751 0.3751

0.380 0.0560 0.4360 0.360 0.0517 0.4117 0.340 0.0396 0.3796

0.420 0.0165 0.4365 0.400 0.0136 0.4136 0.370 0.0116 0.3816

0.440 0 0.4400 0.4160 0 0.4160 0.384 0 0.3840

Note that the first row results of Table 6.2 are taken from Section IV.

The results of the last row reflect the fact that if Lhe system is loaded

quasistatically up to the limit point, then the additional suddenly applied
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load that the system can withstand tends to zero.

Finally, for the case of constant load, p, applied suddenly for a

finite duration, Top critical conditions are obtained from the following

steps:

(a) From the static stability analysis obtain 0 and 6 for each
s u

PO.

(b) Use of Eq. (6.9) yields

Sp ~Cos 0- cos LV 1+ sin 0 / 1+ sine

-L + sin 0s - +

+ P Cos U - Cos 0 0) (6.18)

where er is the position 0 at the instant of the release of the force p
= ).

0

PO
In Eq. (6.1for a given, PO. everything is known (po 00, 0 , and

p 0) except p and 0. Therefore, Eq. (6. 18)relates p and 0 for a critical

condition to exist.
SP+Po d 2

(c) Since T ) ' then from Eq.(6.4)we may write

dO P+P - PO+P
U (Td 6 - U (0) or

di- T s5 T

P +p P +P -2

d' [ 0)- I (0)] dO (6.19)

Integration from T = o to T To and use of the expression for the total

potential [see Eq.(2.2)] yields
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0' h c {[! + sin 0 0. 1 + si n - 1+sin6 0POs
S

+ (po+ P)(Cos 0Po - os )} dO (.20)

Note that Eq. (6.20) also relates 8 to p.cr

A critical condition is characterized by (p, T ) that satifies both

equation, Eq. (6.18)and (6.20). This means that for a given release time,

o 0,find per or for a given p find rOcr. Computationally, though it is

easier to assign values of 8 solve for p from Eq. (6.18)and then for the
cr'

corresponding T from Eq. (6.20).

A computer program has been written for these computations. Values of
p

ecr are assigned, starting with 0,s+ 68, where 68 is very small, and computing

the corresponding values of p and T for each 60.

The results are presented graphically on Figs. 6.2 - 6.7 for the three values

values of 0. On the first three figures critical conditions appear as plots

of p versus duration time, T . Note that as T becomes larger and larger,0°or °cr

the corresponding value of p approaches per (see Table 6.2). On the last

three figures (6.5-6.7), critical conditions appear as plots of (pro) versus
cr

duration time, T . On these figures, as T - o, the corresponding value
°cr °cr

of (Pro) approaches the critical ideal impulse (see Table 6.1).
cr
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Model B_

For this particular model, the sta ic: stability analysis is presented

in Section II. The geometry of the model is given in Fig. 2.3.

In evaluating the effect of preloading, three eccentricities are chosen

( _0.005, 0.010,10.020), and for each 6-val'e the system is initially

loaded quasi-statically with a po-load smaller than pe-static. Then, the

system is loaded dynamically. The following values are used in the dynamic

analysis:

e - 0.005 ; cr 0.955 Po = 0.35 , 0.40, and 0.50.

S0.010 pcr 0.932 Po = 0.30 , 0.40 and 0.50.

S- 0.0z ; Pcr 0.898 Po = 0.30 , 0.40, and 0.50.

First, the extreme cases (To-o and To --) are analyzed, by employing Eqs.

(6.11) and.( 6 .12) respectively.

The ideal inpulse, (pT ) is related to the initial kinetic energy by

the expression

(PT) Po _2 (6.21)

sin 0 + e cos5 s

where es  is the stable static position (angle 0) under p load.

The critical ideal impulse, (p o)cr , is obtained by substituting Eq.

(6.11) into Eq. (5.21), or
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sPT (0.+ (6.22)

where 0 o is the unsaable static position under p0 load, and the expression

for the total potential is given by Eq. 2.5 by uising p wherever p appears in

the equation. The numerical results for all 7, Po combinations are presented

in tabular form :n Table 6.3.

Table 6.3. Crifical Ideal Impulse, (pT)Tcr

(Model B)

=0.005 " =0.01 - 0.02

Po (PT) cr P0  (PTo) P (PTo)

PO(Tor00cr 0 o cr

0 200 0 100 0 50

0.35 192 0.30 88 0.30 42

0.40 164 0.40 7() 0.40 36

0.50 139 0.50 62 0.50 29

0.955 0 0.932 0 0.898 0

Note that the first row results are obtained from Eq. (3.24) of

Section III. Note also that -is the value of p approaches the value of
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the static critical load the additionally imposed (critical) impulse

tends to zero. This is reflected by the results of the last row (Table

6.3).

The critical load for the case of To- , Pcr, is obtained by the

following steps, for a given go, p0 combination.

p0
a) Solve Eq. (2.6) given below, for 0 (stable position)

sin

Po Po (6.23)
tan 0 + e

(b) Static equilibrium positions are characterized by Eq. (2.6) for

loading p + p, or

0i~

P + Po tan + (6.24)

(c) Eq. (6.12) for this model is given below

2
sin 0 2(p0+ p) (0 - cos 0 + e sin 0)

sin 0 - 2 p (I - cosO0 + sin 0 (6.25)
s 0s

The simultaneous solution of Eqs. (6.24) and (6.25) yields 0 p  and
u

Pcr" Note that the same Eq. (6.25) must be satisfied at an unstable point
!po+p 00

(0u ). The stability test may be used to ensure this, or

2 o
+ p

d UT rp2 O +p < 0

dO

7
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The numerical results for all e, p coihi,,ations are presented

in tabular form on Table 0.4.

Table 6.4 - Critical Dynamic Load, pcr
cr

(Constant Load of Tnfinite l),ration: Model. B)

0.0005 e 0.010 e = 0.020

p p p +p p PP p+P p p p +po cr +0 cr. 0 cr O o cr Po P cr 0 cr

0 0.948 0.948 0 0 912 0.912 0 0.85 0.85

0.35 0.60 0.95 0.30 0.62 0.92 0.30 0.59 0.89

0.40 0.54 0.94 0.40 0.52 0.92 0.40 0.48 0.88

0.50 0.45 0.95 0.50 0.42 0.92 0.50 0.38 0.88

0.955 0 0.955 0.932 0 0.932 0.898 0. 0.898

Note that the first row results of Table 6.4 are taken from Section IV.

The results of the last row reflect the fa,:c that if the system is loaded

quasi-statically up to the limit point, the additional suddenly applied load

that the system can withstand tends to zero.

Finally, for the case of constant load, p. applied suddenly for a

finite duration, To , criical conditions are obtained from the following steps:

a) From the static stability analysis obtain O and e for each p,

b) Use of equation (6.9) yields

p0  0 p2p (Cos - e sin 0 cos O + e sin 0 cr

sin 2e0 s 0° 2po(Cos BsPO e sin e0 -
U 0

Cos O u + e sin e o (6.26)
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where G is the posi- ion 0 a1 tile it'sit o" te release of lhe

force p (T' -% )

In Eq. 6.26. for a given geomeirv e alld static load p., everything

-p p
Is known (p. e,, oand 8 0) ex~epi- p and 0 c Therefore, Eq. 6.26

relates p and 0 for a critical condil ion to exist.

c) Since d then from Fq. 0.4 one may write

d - p 0+P. P O' -P0+11 2

- = t I'It, ( ' , o
dT Io a )

T T 0 ,- U.j (O)tie (6.27)

Integration from T = 0 to T= T and use of the expression for the

total potential [see Eq. 2.5] yields

8
cr P

2 Po 2
T sin e. sin o

es

Po PO 2

-2 (p0+p) .(e sin es  - cos "0 - e sin 0 + cos 0))2 do (6.28)

Note that Eq. (6.28) also relates ecr to p.

A critical condition is characterized by (p, T 0 that satisfies both

equations, Eqs. (6.26) and (6.28). This uwanlis that for a given release

time, T 0o find pcr or for a given p find T.c. Computationally, though,

it is easier to assign values of ct, solve for p from Eq. (6.26) and then

for the corresponding T0 from Eq. (6.28).

A computer program has been written for these computations. Values
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-0* p0
of 0 are assigned, starting with 0 + 60, where 6 0, is very small', and

cr s

computing the corresponding values of p and T ° for each 6 0.

The results are presented graphically on Figs. 6.8 - 6.13 for the

three values of 0o. On the first three figures critical conditions appear

as plots of p versos duration time, Tr . Note that as T becomes larger
0 O
cr cr

and larger, the corresponding value of p approaches pcr (see Table 6.4).

On the last three figures (6.11 - 6.13) critical conditions appear as plots

of (pTo)cr versus duration time, To . On these figures, as To -* o, the
cr cr

c corresponding value of (pTo)cr approaches the critical ideal impulse (see

Table 6.3).
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Model C.

For this particular model, the static stability analysis is presented

in Section JI. The geometry of the model is given on Fig. 2.4 and the

static response on Fig. 2.6.

In evaluating the effect of prestress, three A-characteristic coef-

ficients are chosen (A = 5.0, 6.0, 8.0), and for each A-value the system

is initiatly loaded quasi-statically with a po-load smaller than the per

static. Then, the system is loaded dynamically. The following values

are used in the dynamic analysis.

A - 5.0 ; Pr - 5.154 ; p = 2.8, 3.4, 4.0

A - 6.0 ; Pr - 6.000 ; P0 = 3.2, 3.8, 4.2

A - 8.0 ; Pr - 7.310 ; P = 4.8, 5.4, 6.0

First, the extreme cases (TO-* o and T " co) are analyzed, by employ-
00

ing Eqs. (6.11) and (6.12), respectively.

The ideal impulse, (pr ), is related to the initial kinetic energy in

the nondimensionalized form [ee Eqs. (3.22)J by the expression
1

(p o) [ 2 Tt  j- (6.29)

p 0 0

where e is the stable static position (angle 0) under p load. The

critical ideal impulse, (pT 0 cr , is obtained by substituting Eq. (6.11)

into Eq. (6.13), or

1

(Pro)cr [OT2 7J (ego) OT Gu~ (6.30)
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p0
where 0 is the unstable static position under p load, and the expression

for the total potential is given by Eq. (2.2) by using p0 wherever p appears

in the equation. The numerical results for all p0 combinations are pre-

sented in tabular form on Table 6.5.

Table 6.5 - Critical Ideal Impulse, (pTo)cr,(Model C)

A-5.0 A=6.0 A=8.0

PO (PTo)cr- P9 (PTo r _0 (PT0)cl

0 6.00 0 6.71 0 7.93

2.8 3.06 3.2 3.39 4.8 3.04

3.4 2.32 3.8 2.67 5.4 2.31

4.0 1.32 4.2 1.67 6.0 1.44

= 5.154 0 6.0 0 7.31 0

Note that the first row results are obtained from Eq. (3.26) of

Section III. Note also that as the value of p0 approaches the value of

the static critical load the addtionally imposed (critical) impulse tends

to zero. This is reflected by the results of the last row (Table 6.5).
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The critical load for the case of ' pr ' is obt.-tined h-. thi

following steps, for a given ', P0 combination

a) Solve Eq. (2.17) given below for r (stable position) and s = 0,

2

Po (A-"-r ) r  + fA (6.31)

b) Static Saddle equilibrtim positions are CharacLcrized by Eq. (2.19)

for loading p0 + p, or

p4P -VT
r

2
(6.32)

r + 3s2 - A-3

c) Eq. (6.12) for this model is given below

2 2_ 2_ 2 2_

(r + 9s 2
- r + ,A,) 4 N , - +(P op (./A-r)=

2- 0

ro4 iA-r o 2- 2Po(,,-r o) (6.33)

I +j)

The simultaneotts soltiton of FIqs. (6.32) and (6.33) yields r 0 and cr.,

The numerical results for all A, p Conti)i naiows are presented in Tabular

form on Table 6.6.

Table 6.6. Critical Loads (Constant Magnitude, lnfinite Duration - Model C).

A 5.0 A = 6.0 A = 8.0
p0 .... p I+ P o P

P 0 Pcr40 Po + Pcr. Po Pcr o cr o0 Pcrm "0PC r.

-0 3.70 3.70 0 4.35 4.35 0 5.30 5.70

2.8 1.48 4.28 3.2 1.68 4.88 4.8 1.59 6.39

3.4 1.17 4.57 3.8 1.22 '.02 5.4 1.21 6.61

4.0 .58 4.58 4.2 0.85 5.0') 6.0 0.68 b.68

15.154 0 5.4 b.1O') 0.0 0.000) 1. fl 0.0 1.3 L
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Note that the first row results of Table 6.6 are taken, from Section IV.

The results of the last row reflect the fact that if the system is loade<i

quasi-statically up to the limit point, then the additional suddenly applied

load that the system can withstand tends to zero.

Finally, for the case of constant load, p, applied suddenly for a finite

duration, r critical conditions are obtained front tLh following steps:

(a) From the static stability analysis obtain r 0 and r , s 0 foru u

each p.

(b) Use of Eq. (6.9) yields

2 2

2p (r - r )=(r +9s o 2,/A r + A) +
_ cr U u u

P 1 P 0 p 2 2  P Po)
+ - (A-r () r 0 /) 2  (A-r o ) + 2p (r O _ r (6.34)

2 U s 0 ki 5SSl

where r cr is the position r at the instant of the release of the force p (=,r ).

In Eq. (6.34), for a given geometry, A, and Static load, PO everything is known

P 0 r0 PO
(P Orc r o and SU ) except p and rcr. ' Therefore, Eq. (6.34) relates p and

r for a critical condition to exist.cr o
(c)Sice 1 '2) dr 2<c) inceT '~l~s (-7) , then from Eq. 6.4 we may write

PO +P 1P Po4+

dr 0 i o (L - U Z T r s 11. or

20p+p, P,, o+P
d = LUT (r UT (r.s)_j dr (6.35)

Invoking the same techniques we used for the same problem but without prestress

in Section V, the critical time T is computed on the symmetric path s - o.i

Integration from T = 0 to 'T = T and use of the expression for the total

potential [see Eq. 2.13) yields

r2
0f r s A) 10K -S p °  (r -,rq)2 T (A -r)

r o
a

i"i



p
- 2 (p +po)(r- r )  dr (6.36)

Note that Eq. (6.34) also relates r to p.

A critical condition is characterized by (p, 1 ) that satifies botho

equation, Eqs. (6.34) and (6.36). This means that for a given release time,

o, find pr or for a given p find T o . Computationally, though it is easier

to assign values of r r solve for p from Eq. (6.34) and then for the corre-

sponding T from Eq. (6.36).

A computer program has been written for these computations. Values of

p0r are assigned, starting with r°+ 6r, where 4r is very small, and computing
cr s

the corresponding values of p and 0 for each 4r.

The results are presented graphically on Figs. 6.14 - 6.17 for the three

values of A. On the first three figures critical conditions appear as plots of

p versus duration time, Tr . Note that as T becomes larger and larger, the

corresponding value of p approaches per (see Table 6.6). On the last three
(D

figures (6.17 - 6.79) critical conditions appear as plots of (PTo)cr versus

duration time, r . On these figures, as To - o, the corresponding value of
1 cr cr

(Fr o 0 approaches the critical ideal impulse (see Table 6.5).
cr
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SECTION VII

THE INFLUENCE OF SMALL DAPING - CONSTANT LOAD OF FINITE DURATION

Statement of the Problem

In this section the effect of small damping on critical conditions

and estimates for dynamic stability of the nvdels are investigated. The

problem of constant load for finite duration is considered here as stated

in Section V, but small damping is introduced by a dashpot connected in

parallel with a spring.

Since damping is small, the trajectory of the damped system could

be thought of as a perturbation around the trajectory of the undamped one.

This is the key assumption which helps find the estimates for the damped

system as a sum of the corresponding estimates for the undamped system

plus a product of the small damping coefficient, p, times a quantity

depending only on the model geometry.

General Approach

Damping forces F are introduced by a dashpot and are equal to

F p.L

where p is the damping coefficient and L the trajectory of the dashpot.

A nondimensionalization, p, of the damping coefficient p. could be

*obtained by

where k is the elastic constant of the spring and X a normalizing coefficient

having dimension of time.
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Furthermore the nondimensionalized dissipated energy, D, is

expressed by

D = , jLdL (7.1)

L

whereLdL stands for the nondimensionalized dissipated energy when

- 1. The balance of energy is expressed by the equations

T + U'T +D 0 for O<T<T 0 (7.2)

and io +e +D C forT <T (7.3)
T0

where C is a constant Eq. (7.2) characterizes the energy balance during

the action of the load, p, and Eq. (7.3) after the release of P.

Moreover, the continuity and both kinetic and dissipated energies

at the release of the load yields the constant coefficient C, equal to

C -P

T0

With this value of C, Eq. (7.3), the balance of energy after the action

of the load P becomes

To + UT + , + I o 0 for T <T (7.4)
TLTTK - T 0

Since a system is called dynamically stable if it is not allowed

to reach the zero-load unstable equilibrium point, L0 , with the least
u

potential energy, the total energy of the system, o- UT + o with zero

velocity (Kinetic Energy) at u, ust be less than the potential energy of

the system at that point.
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Consequently the balance of energy for T > T expressed by Eq.

(7.4) gives the critical condition

-Q - F 0 (7-5)

Furthermore the nondimensionalized damping coefficient is very

small (.u << 1) and the trajectory of the damped system could be thought

of as a perturbation around the undamped one. The critical displacement,

LcPr, the displacement which guarantees stability as long as the applied

force is released before the system reaches it, may be expanded in a

Taylor's series as,

cr Ocr - cr2(76

where L p is the critical displacement for the same problem but withoutocr

the influence of damping.

Use of Eq. (7.1) into Eq. (7.5) yields
10

-0 - %o O - go (7.7)
T LL0T TI p

LL 0cr

Invoking the expression for LP from Eq. (7.6), the quantity
cr

0-ma be expanded in Taylor's series also.

cr

,-: (7.3)

whore J stands for the degrees of freedom of the model.
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sam Introducing Eq. (7.8) into Eq. (7.7) ;wd spr;iting terms of the

same order of magnitude, yLeldS IWo equatlon.;

~ t~{"'' -1 K(7.9)
U cr

and for one degree of freedom trajv''tory

p~ 09

~J'o 0

1 r - p j (7.10)

T TJ LP
o cr

P
After evaluating &r , the critical tine t for the release of the

cr

load P is found by the balance of energy equation (Eq. 7.2).

It is simply mentioned that Eq. (7.9) gives the displacement estimate

L P for the undamped system and it is the same as that given in Section V.
o cr

On each model Eqs. (7.9) and (7.10) will be applied and the correction

of the displacemcnt, 1 ( I = 1), will be found. Furthermore, corrections

for the critical time, T , will be complted also.
cr

Model A -- Geometrically Lnperfect Model

Consider model A exhibited in Section II but under the influence of

small damping. Damping is introduccd by . da!;hpot connected with the spring

as shown on Fig. 7-1.

• 0.
k

Fig. 7-1 CtmieIry of Model A with wamping
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If & is the damping coefficient, the nondimnsionalized dissipated

energy, D, is expressed by

- D
=0 sin'(" '  dp (7.11)24 2

kLi. 0

It is assumed that the velocity of the dashpot is equal to that of

joint B, and that y is the trajectory from 0 to 0.

Applying the nondimensionalization

= ' and () -(7.12)ym (7.12

and recalling that the unstable position, 0, on the zero load poten-

tial for the undamped system is given by 0 the Eqs. (7.9) and (7.10)

yield:.- 0
00 

= arc cos (cos 0 0 (7.13)
cr

ITeP 02
and = Jo sin a2 dCP/ sin O(7.14)

0

The evaluation of the integral below is needed in Eq. (7.14)

I °  s 2,' do0g (7.15)
e O

Recalling the energy equation for the undamped system, Eqs. (5.1) and

(5.2)

•2 2

o o" - p (coso0 -cos 6) -0 90<0y< 9 (7.16)
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1

and

= o ) 0 ..0 cr z(7.17

lence the integral I becomes

6P

I 'tpt:sO -Cos T) -[,/Yislinp \/+i iT 2(~..jd
000

-- _c__21
P~oecoseP I1+s incP ,-, in d~ dcp (7 18)

OP 0 Cr

The critical time TO nmy be found by invoking Eq. (7.2) for
cr

S<r<r 2{Thus
0

6P P

cr dO
T 0 z <T ee°cr o e P (cOSOo-COsq) -/,17i - ,1i+sin~O- Zjo0sn(14 g )(_kP

0

(7.19)

Expanding T in power series of IL we have0

0 T o + T o 4. 0 (.i2)  (7.20)
cr cr cr

where

P
e

r 00 o cr do
cr 0 / c = -.. - . I in . - i- . (7.21)

is the critical time for the undamped system, and

,~ T
P 5eO • ,no

lOroP c sin -O) do de +

Ocr" - o e [p(cose -cose)-( U+iWTne - /2

0 ~00
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+ Icr

\'p(cosO - cos Op.) - [/I+sin 9 -- Il+sinO (7.22)
0 0 c0 o cr 0

Note that O r is a function of parameters related to the undamped

system only. The same holds true for i
O

The governing equations for finding critical conditions in the

presence of small damping (I << 1) are Eqs. (7.13), (7.14), (7.21) and (7.22).

Note that Eq. (7.18) is employed in Eq. (7.14). These four equations relate

the given small damping coefficient )j, the applied load p, and the time parame-

ters •and A critical condition is expressed in terms of a load
o--rolcr

level p and the corresponding time T = T . Thus, a critical con-
cr cr cr

Ui dition may be found by posing the problem as follows: for a given small

damping coefficient a and load level p, find (through the simultaneous solu-

"' tion of the four governing equations) the corresponding critical time para-

meters, o;o and jo , and position parameters, o 0er and L0.cr " Note that
Cr cr

the range of p-values (assigned) must be greater than dynamic critical load

for the case of a suddenly applied constant load of infinite duration, with-

out damping. The computational procedure involves the following steps: (a)

assign a p-value and compute o from Eq. (7.13), (b) Employ Eq. (7.18) in

Eq. (7.14) and solve for 106 c, (c) Front Eq. (7.21) solve for 0 T 0 'n
cr

finally (d) Employ Eq. (7.22) and solve for 1 T0  . A computer program is
cr

written to accomplish the solution and numerical results are generated for three

values of the imperfection parameter 6 (0.005, 0.010, and 0.020). These

o

results are presented on Table 7.1.
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Table 7.1. Critic.-l Conditions for (ow::1m,. I.onIi of Finite )uratLion In
Li: Prs'n ct o1 IPlmpiung (Model A)

0 I 0 10
cr Cr

0.005 0.45 31.25 29.61

0.50 19.55 11.15

1.00 8.97 1.99

3.00 3.42 .55

5.00 2.63 0.35

10.00 2.11 0.20

50.00 0.63 0.06

0.010 0.41 33.23 78.53

0.45 21.14 12.85

0.50 12.32 7.30

1.00 7.78 1.64

5.00 2.00 .31

10.00 1.24 .18

50.00 0.42 .07

0.020 0.44 13.69 7.47

0.55 9.98 3.62

0.65 6.87 2.53

1.00 5.85 1.30

5.00 1.91 .27

10.00 0.96 .16

50.00 0.39 .06

99



Note that, since a critical condition corresponds to i set of

P, 1o values. , a :;mll datnIpinp}% coaefli'ilit L he: a stlabilizing effect.
cr

This effect, though, is very small. For inst:ance, at the high values

of the load p (say for 00 0.005, p 10) the corresponding value for

(if 0 0.04) is 2.110+ 0.008 2.118. Remember that the p -
0 0
cr cr

curve for the undamped system (see Fig. 5) is very steep at the high p-

value and virtually flat at the low values of p. On the other hand,

when p - 0.45 (a value close to per. = 0.432) the corresponding critical

time is t - 31.25 + 1.184 = 32.434. Since the curve is very flat at this

cr
load p-value, one may conclude that the effect of small damping is virtually

negligible.

Model B

Consider model 11 discussed in Section II, but under the influence

of small damping. Damping is introduced by a dashpot connected with the

spring on Fig. 7-2.

P

Fig. 7-2. Geometry of Model 8 with damping.
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if 0 is the damping coefficient, the nondimensionalized

dissipated energy, D, is expressed by

0D . " , . d (7.23)

It is assumed that the velocity of the dashpot is equal to that

at joint C and cp is the trajectory from 0 to E.

Applying the nondlimensionalization

" - mt 2 p and () = (7.24)

and recalling that the unstable position, Lu , for the "zero load" potential

of the undamped system is given bye 0  T , then Eqs. (7.9) and (7.10) yield
u 2

2p (I - cos ocr + e sin o0r) = 1 (7.25)

and

SOo do
1 cr 2p (sin o0cr +Ecos 0 ) (2

Thus for the evaluation of the integral

i - J0o do (7.27)

the balance of energy expressions for the undamped system Eqs. (5.1) and (5.4)

are recalled. Hence

.2 2
oP + sin2 - 2p (1 - cosoc + esinoV) 0 for 0<ooc (7.28)

and

-+ sin-2 c..2p ( + sinoo ) = 0 for 0 < < (7.29)
o o2 cr o+cr cr 2
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Integral I becomes

cr e 1  2p ( coscP + sfncp) -sin 2 c4d cp +
0

~2 ,.20,

S,/2p (o - COo0 r + e s'on9  - sin o d0cp (7.30)

o cr

The critical time, T 0 may be found by invoking Eq. (7.2). Thus
cr

ep
cr dO (7.31)

0cr j 2p (1 - cos 6 + ; sin 0)- sin2O - dy
Exanin 0 in plk seiso(P ii «1 n b~in0

Expanding T 0 in power series of p (p <-' 1) one oba;ns

cr
- T +Lj 1Ir 2 7.2- (2)

0 0 0 + o +o (7.32)
cr cr cr

where
0P

0 0cr dO (733)

cr 0 42p (1 cos 0 + sin 0) - 2G

is the critical time for the undamped system, and

P 0P

l~C; .;  P- =0 ' 0 2p( -cos 0+;s >sin) - '

0 
P

+ cr (7.34)

/2p(- Os + csin 9)sin 2 0
P (I - cos o cr o cr s o cr

Note that 1 r is a function of paraimeters related to the undamped
1 cr

system parameters only. The same holds true for I
To 0

cr
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The governing equations for finding critical conditions in the presence

of small damping (1h << 1) are Eqs. (7.25), (7.26), (7.33) and (7.34).

Note that Eq. (7.30) is employed in Eq. (7.26). These four equations relate

the given small damping coefficient , the applied load p, the time para-

meters T and IT , and the position parameters 0 P and 0 A
cr cr

critical condition is expressed in terms of a load level p and the corre-

sponding time 0 = 0 + T1o * Thus, a critical condition may be found
cr cr cr

by posing the problem as follows: for a given small damping coefficient P

and load level p, find (through the simultaneous solution of the four

governing equations) the corresponding critical time parameters, °T and
p~ cr

I , and position parameters, 0 and 0 Note that the range of|lo°cr ocr Ilcr "Nt htterneo

p-values (assigned) must be greater than dynamic critical load for the case

of a suddenly applied constant load of infinite duration, without damping.

The computational procedure involves the following steps: (a) assign a

p-value and compute 0 P from Eq. (7.25), (b) employ Eq. (7.30) in Eq. (7.26)p-value~ ~ an opt cr

and solve for 0 (c) from Eq. (7.33) solve for T and finally0 0
cr

(d) employ Eq. (7.34) and solve for 1T
cr

A computer program is written to accomplish the solution and numerical

results are generated for three values of the eccentricity parameter e

(0.005, 0.010, and 0.020). These results are presented in Table 7.2.

Note that, since a critical condition corresponds to a set of p, T
cr

values, a small damping coefficient p has a stabilizing effect. This

effect, though, is very small. For instance, at the high values of the

load p (say for e = 0.005, p a 10) the corresponding value for 1 0c (if
cr

= 0.04) is 0.16 + 0.0064 = 0.1664. Remember that the p-T curve for
cr
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the undamped system (see Fig. 5.3) is very Steep at the high p-value and

virtually flat at the low values of p. On the other hand, when p - 0.95

- ( a value close to Pcr = 0.948), the correimiding critical time is

T 1.93 + 0.055 - 1.985. Since the curve is very flat at this load
;. er

- "p-value, one may conclude that the effect of small damping is virtually

negligible.

I.10
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Table 7.2. Critical Conditions for Constant Load of Finite Duration in
the Presence of lamping (Model It).

e p 1 1'
cr cr

0.005 0.95 1.93 1.39

1.20 1.28 1.04

1.50 0.75 0.80

5.00 0.23 0.27

10.00 0.16 0.16

100.00 0.029 0.04

0.01 1.15 1.22 10.04

1.70 0.65 2.06

5.00 0.27 0.33

10.00 0.18 0.14

20.00 0.11 0.07

100.00 0.024 0.06

0.02 1.10 0.78 13.96

1.50 0.46 2.90

5.00 0.16 0.33

10.00 0.092 0.14

30.00 0.048 0.04

75.00 0.022 0.02
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Model C

In this article, the effect of small damping on a two-degree of freedom

* model (model C) is investigated. Damping is introduced through a dashpot

connected with the extensional spring as is indicated on Fig. 4.2.

The damping coefficient is equal to p.

BO Undeformed

., '/ " Deformed ,, __.

AAK

Fig. 7-3. ,ometry of Model C with damping

Since the nondimensionalized cxtension of the spring is

w = A - r 3s2 (7.35)

the rate of change with respect to tine is equal to

dw - o
2r- 3s (7.36)

ILUG
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If - ( , the nondimensionaliz.ed damping tocfficient and 0 the

(M2 nondimensionalized dissipated energy, then

f X, dw (7.37)

and with the right hand sides of the Eqs. (7.35) and (7.36), the non-

*dimensionalize dissipated energy becomes

D p (2ir + 6;s) (2rdr + 6sds) (7.38)

where stands for the line integral along the trajectory of the system

in the r-s plane. Furthermore, the lowest potential unstable equilibrium

position of the "zero load" potential is the saddle point with

U - 9(A- ) (7.39)

Recalling that for the undamped system the trajectory, which must be followed

for maximizing the added energy when p is acting, lies on the r axis, and

recalling Eq. (7.9), it is found that

r - (A - 1) + JA (7.40)
o cr 4p

However, the trajectory that the system follows from the release of the

load until it reaches the unstable saddle point (r = A - , s = +

is not known. Since Eq. (7.38) gives the dissipated energy during this

period of time as

(2r + 6ss ) r dr,

rcr

a lower bound for the absolute value of D may be found, if one considers
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the path, a E 0 and /A 2 r •A. Note that r A is the starting
3

point and r = %r - - is the r-coordinate of the saddle point on the " zero
2

load" potential.

Following the same steps as in the brachistochrone problem (see Appendix

A), it is proven that the symmetric path s 0 is the minimizing path for

Smin. Then from Eq. (7.10)

ir - p 4 2 di (7.41)

where r p  is the parameter shown in the equationcr

r P  r p +1 r p  + o 62) (7.42)
cr o cr icr

Furthermore, recalling that the total energy for the undamped system along

the r axis ( 0 0) is expressed by

ao 2 1.2
r 1 (A r2 )2

l()2+(r -A )2 (- - 2 p (vr - r) =0 ,(7.43)

then

r0 -2)2

r = ,/4p (,/- r) - (A- r - 2 (r -/) 2  (7.44)

Hence, Eq. (7.41) becomes~p
r

6l~c =" po er d/
r 2 14p (,/A- r)- (A -r 2 ) 2 -2 (r-V ) 2  dr

ICr p'
'/A 3

21'- r2 I4F ([ 2)2 '-2dr

rc

In addition, the critical time r may be found by invoking Eq. (7.2), which
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expresses the balance of energy for 0< < . Thus,
P0

rr0c~r dr (746

c"p (.,fA -r) - r2)- 2 (r -,S) ro 2 dx

and expanding T in power series of IJ ( << 1), one may write

- 2
T 0 00+ Ilo + 0(2) (7.47)

cr cr cr

where

P
ro cr d

P 0 r 0 (7.48)

cr crl.=0 ' 1 Ar) ( 2 2 ( ,A
'~~j 4 p ~- -(-)-

and r 22
P 8 x• p (JA -" x) - (A - x) 2 (x-,K)2 dx

r - 2 dr

/42 j / ) 3(7.9

/r 4r r) - (A- rr) - 2 (r -(

i r

P
Note that r is a function of the undamped system only. The same holds

0crtrue for TO •r

The governing equations for finding critical conditions in the presence

of small damping (p << 1) are Eqs. (7.40), (7.45), (7.48) and (7.49).

These four equations relate the given small damping coefficient pa the

applied load p, the time parameters 0T0 and iTo , and the position

p cr cr
parameters orcr and lrcr* A critical condition in expressed in terms of a

* load level p and the corresponding time T = T 0 . Thus, a
Or  cr cr
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critical condition may be found by posing the problem as follows: for a

given small damping coefficient and load level p, find (through the

simultaneous solution of the four governing equations) the corresponding

critical time parameters, T and I , and position parameters, rP
P cr cr cr

and 1rr. Note that the range of p-values (assigned) must be greater than

* dynamic critical load for the case of a suddenly applied constant load

of infinite duration, without damping. The computational procedure Involves
p

the following steps: (a) assign a p-value and compute r from Eq. (7.40),0 Cr

P
(b) employ Eq. (7.45) and solve for lrcr (c) From Eq. (7.48) solve for

0Tr and finally (d) employ Eq. (7.49) and solve for 1To0. Ocr oct

A computer program is written to accomplish the solution and numerical

results are generated for three values of the pirameter A (A = 5.0, 6.0, 8.0).

These results are presented on Table 7.3. Note that, since a critical

condition corresponds to a set of p, To values, a small damping coefficient
crp has a stabilizing effect. This effect, though, is very small, For

instance, at the high values of the load p (say for t=5, p=lO) the corresponding

value for T (if u=O.04 ) is 0.32 +- 0.029 = 0.349. Remember that the
0
cr

p-T curve for the undamped system (see Fig. 5.5) is very steep at the
cr

high p-value and virtually flat at the low values of p. On the other. hand,

when p-=4 .15(a value close to pr =3.71) the corresponding critical time

is - = 1.32 + 3.18 = 4.50. Since the curve is very flat at this load
cr

p-value, one miy conclude that the effect of :,mill1 dampine, is virtually

negligible.
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Table 7.3. Critical Conditions for Constant I.oad of Finite Duration
in the Presence of Damping (ModL'! C)

A p T0

r 1ocr

5.0 4.15 1.32 79.66

4.20 1.29 33.11

4.30 1.13 16.50

5.00 0.78 4.12

8.00 0.39 1.10

10.00 0.32 0.74

30.00 0.11 0.10

70.00 0.41 0.03

100.00 0.29 0.02

6.0 5.25 1.70 131.11

5.50 1.52 5.12

7.00 0.)60 2.94

10.00 0.39 1.57

12.00 0.34 0.78

20.00 0.18 0.31

30.00 0.13 0.16

50.00 0.078 0.06

80.00 0.042 0.03

8.0 7.75 0.71 56.31

8.50 0.65 6.12

9.00 0.55 4.34

15.00 0.23 0.99

20.00 0.21 0.68

30.00 0.14 0.34

1)0.00 0.089 0.I1

80.00 0.052 0.05

150.00 0.018 0.01
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APPENDIX A. THE BRACHISTOCHRONE PROBLEM

Constant Load of Finite Duration-Model C.

The problem of dynamic stability of model C (Snap-through Model)

subjected to constant load of Finite Duration and discussed in Section V,

reduces to finding the brachistochrone path starting from point (r, s) =

* (JV, 0) and reaching the vertical r - rcr = - (A-i) (A.l)

where p is the nondimensionalized load parameter and A is a geometric

* parameter of the model. Since, from physical considerations, the

- motion, in the interval J3 < r < [ follows the steepest descent path,

which is the symmetric path (s-=O), the brachistochrone problem will be

restated as follows: find the path that requires the smallest time, for

the system to reach positions characterized by r rcr and starting from

(r / %A-3, s=0) with s'=O.

The total Potential Energy of the system is given by Eq. (2.13) as
= 1(r2 2 1 2 22

T (2+9s-2v'A-r+A) + - (A-r -3s )2- 2p(/A-r) (A.2)

Recalling Eq. (5.1).

-P -PUT+ T= 0 for 0< T <0 (A.3)

where P= I ,2 dr 2 (AA)

and ( )'

then the brachistochrone problem reduces to extremizing the following integral

2 r
r - s cr

I W _2mmdr X (r,ss' )dr (A.5)

=-3 -2T /A- 0 h3

by considering paths which start at r - vr,-3 and sa 0 with a'- 0 and reaching

*positions characterized by r r rcr (constant).
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The Euler-Lagrange equation and the associated boundary conditions for

this brachistochrone problem, Eq. (A.5), are (see reference [26]

X d ; XX _ d - M0 (A.6)
- s dr a 0

Xs'r rcr 
cr

Note also that s s' =0 r = 2 .

/2
Since X _ l=- + s  Eq. (A.6) yields

-
2UT

2 2
s" + (s'+ 813) r+9ss'-/A-(A-r -3s (r+3ss')+p-P

_UT

2 2
- (1+s'2)2 9s-3s(A-r -3s2) =0 (A.7)

-P
Ui

One solution to Eq. (A.7), that satisfies the boundary conditions, is given

by the path s-O. However, there is no guarantee that path sO is the unique

extremal path of the variational problem. Suppose that the solution to Eq.

(A.6) bifurcates at a point (r = rb s - 0) where r < rb <./ KA-3. Obviously

a'- 0 at that point.

However~considering a closed domain D = [r,s,s'3, such that s < 8 and

s' < 6 where 6 is a very small positive number (6<<I) with the point (rb

-P0, 0) lying in the interior of D and UT <- w (w > 0 any proper positive number)

everywhere on D, the function

f(r,s,s ') =-(s'+' 3)r+qss L -- (A-r2_392 )(r+3ss')+p
.-p
UT

,2 2 9s-3(A-r2"3s) (A.8)

UT
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is continuous and satisfies the following Lipschitz condition on D.

Sf(r,;,s') - f(r,s,s')1<LljS'-s'j+L21s-s!

Since higher order terms in s and s' are cancelled out and L and L2 are

equal to

L= max Ir--(A-r2)r+p max 12(r,s)

I UT

and L = max r _pax 02(rs)
UT

The existence of L1 and L2 is guaranteed by the continuity of the functions

01 and 02 on D. See reference [27). of

Recalling the Uniqueness theorem (Picard-Lindelof) for a differential

equation of second order, see reference [28], the initial value problem,

composed by the differential Eq. (A.7) and the boundary conditions sir =

s' = 0, used as initial conditions in the mathematical sense, admits a
rb

unique continuous solution in the interior of D. Therefore, the solution

to Eq. (A.7) which is initially symmetric does not bifurcate at any point on

the r-axis. Consequently the symmetric solution is unique.

Since the total potential U P is symmetric with respect to the r-axis, the
T

extremal path, s-O, cannot be a minimax. Moreover, around any path there

always exists another path yielding higher value for the time of motion

[integral I expressed by Eq. (A.5)]. Thus, the extremal path s-O cannot be a

maximal path either. Therefore, saO is the brachistochrone path of the problem.

Note that path s-O is not a ficticious path but a real one, since it

satisfies the equations of motion.

* - - 2[r(-l-r 2 -3s 2 )-p + /A = 0

d'r
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and - ~6u (A-3-r 2  2

given in reference (303.
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